Important Notice:

The answer paper must be submitted before 27 Nov 2021 at 5:00pm.

♠ The answer paper MUST BE sent to the CU Blackboard.

 \bigstar The answer paper must include your name and student ID.

Answer ALL Questions

1. (**30** points)

- (a) Let S be a countably infinite bounded subset of \mathbb{R} . If we let D be the set of all limit points of S, show that there is a family of infinite subsets of \mathbb{N} indexed by D, say \mathcal{F} , that is $\mathcal{F} := \{N_{\alpha} : N_{\alpha} \text{ is an infinite subset of } \mathbb{N}, \alpha \in D\}$, such that $N_{\alpha} \cap N_{\beta}$ is a finite set whenever $\alpha, \beta \in D$ with $\alpha \neq \beta$.
- (b) Using Part (a), show that there is an uncountable family of infinite subsets of \mathbb{N} , say $\{N_i : i \in I\}$ where I is an uncountable index set, such that $N_{\alpha} \cap N_{\beta}$ is a finite set whenever $\alpha, \beta \in I$ with $\alpha \neq \beta$.
- (c) Let \mathcal{U} be a non-empty collection of subsets of \mathbb{N} which satisfies the following conditions:

(i) $A \cap B \neq \emptyset$ and $A \cap B \in \mathcal{U}$ whenever $A, B \in \mathcal{U}$.

(*ii*) A or $A^c \in \mathcal{U}$ for all subsets A of N.

Let (x_n) be a bounded sequence of real numbers. Show that there is a number L such that for all $\varepsilon > 0$, we have $\{n \in \mathbb{N} : |x_n - L| < \varepsilon\} \in \mathcal{U}$. Is such L unique?

2. (20 points)

- (a) Let f be a real valued function defined on [a, b]. A discontinuous point $c \in [a, b]$ for f is called a jumping point if $f(c) = \lim_{x \to c^+} f(x)$ or $f(c) = \lim_{x \to c^-} f(x)$. Suppose that f is continuous on [a, b] except finitely many jumping points. Show that there is a sequence of continuous functions $f_n : [a, b] \longrightarrow \mathbb{R}$, n = 1, 2, ... such that $f(t) = \lim_{x \to c^+} f_n(t)$ for all $t \in [a, b]$.
- (b) Let g be a real valued function defined on [a, b]. Suppose that there is a sequence of continuous functions $g_n : [a, b] \longrightarrow \mathbb{R}$, n = 1, 2... such that $g(t) = \lim_n g_n(t)$ for all $t \in [a, b]$.

Show that for any $m, M \in \mathbb{R}$ with m < M, there is a sequence of compact sets $(K_n)_{n=1}^{\infty}$ such that $\{t \in [a,b] : m < g(t) < M\} = \bigcup_{n=1}^{\infty} K_n$.

*** END OF PAPER ***