Important Notice:

\& The answer paper must be submitted before 27 Nov 2021 at 5:00pm.
© The answer paper MUST BE sent to the CU Blackboard.
The answer paper must include your name and student ID.

Answer ALL Questions

1. (30 points)
(a) Let S be a countably infinite bounded subset of \mathbb{R}. If we let D be the set of all limit points of S, show that there is a family of infinite subsets of \mathbb{N} indexed by D, say \mathcal{F}, that is $\mathcal{F}:=\left\{N_{\alpha}: N_{\alpha}\right.$ is an infinte subset of $\left.\mathbb{N}, \alpha \in D\right\}$, such that $N_{\alpha} \cap N_{\beta}$ is a finite set whenever $\alpha, \beta \in D$ with $\alpha \neq \beta$.
(b) Using Part (a), show that there is an uncountable family of infinite subsets of \mathbb{N}, say $\left\{N_{i}: i \in I\right\}$ where I is an uncountable index set, such that $N_{\alpha} \cap N_{\beta}$ is a finite set whenever $\alpha, \beta \in I$ with $\alpha \neq \beta$.
(c) Let \mathcal{U} be a non-empty collection of subsets of \mathbb{N} which satisfies the following conditions:
(i) $A \cap B \neq \emptyset$ and $A \cap B \in \mathcal{U}$ whenever $A, B \in \mathcal{U}$.
(ii) A or $A^{c} \in \mathcal{U}$ for all subsets A of \mathbb{N}.

Let $\left(x_{n}\right)$ be a bounded sequence of real numbers. Show that there is a number L such that for all $\varepsilon>0$, we have $\left\{n \in \mathbb{N}:\left|x_{n}-L\right|<\varepsilon\right\} \in \mathcal{U}$.
Is such L unique?

2. (20 points)

(a) Let f be a real valued function defined on $[a, b]$. A discontinuous point $c \in[a, b]$ for f is called a jumping point if $f(c)=\lim _{x \rightarrow c+} f(x)$ or $f(c)=\lim _{x \rightarrow c-} f(x)$.
Suppose that f is continuous on $[a, b]$ except finitely many jumping points. Show that there is a sequence of continuous functions $f_{n}:[a, b] \longrightarrow \mathbb{R}, n=1,2, \ldots$ such that $f(t)=\lim _{n} f_{n}(t)$ for all $t \in[a, b]$.
(b) Let g be a real valued function defined on $[a, b]$. Suppose that there is a sequence of continuous functions $g_{n}:[a, b] \longrightarrow \mathbb{R}, n=1,2 \ldots$ such that $g(t)=\lim _{n} g_{n}(t)$ for all $t \in[a, b]$.
Show that for any $m, M \in \mathbb{R}$ with $m<M$, there is a sequence of compact sets $\left(K_{n}\right)_{n=1}^{\infty}$ such that $\{t \in[a, b]: m<g(t)<M\}=\bigcup_{n=1}^{\infty} K_{n}$.

